Climate Change and Human Health Literature Portal # Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms Author(s): Dinkova-Kostova AT **Year:** 2008 **Journal:** Planta Medica. 74 (13): 1548-1559 #### Abstract: Ultraviolet (UV) radiation is one of the most abundant carcinogens in our environment, and the development of non-melanoma skin cancers, the most common type of human malignancy worldwide, represents one of the major consequences of excessive exposure. Because of growing concerns that the level of UV radiation is increasing as a result of depletion of the stratospheric ozone and climate change, the development of strategies for protection of the skin is an urgent need. Many phytochemicals that belong to various families of secondary metabolites, such as alkaloids (caffeine, sanguinarine), flavonoids [(-)-epigallocatechin 3-gallate, genistein, silibinin], carotenoids (beta-carotene, lycopene), and isothiocyanates (sulforaphane), offer exciting platforms for the development of such protective strategies. These phytochemicals have been consumed by humans for many centuries as part of plant-rich diets and are presumed to be of low toxicity, an essential requirement for a chemoprotective agent. Mechanistically, they affect multiple signalling pathways and protect against UV radiation-inflicted damage by their ability to act as direct and indirect antioxidants, as well as anti-inflammatory and immunomodulatory agents. Such "pluripotent character" is a critical prerequisite for an agent that is designed to counteract the multiple damaging effects of UV radiation. Especially attractive are inducers of the Keap1/Nrf2/ARE pathway, which controls the gene expression of proteins whose activation leads to enhanced protection against oxidants and electrophiles. Such protection is comprehensive, long-lasting, and unlikely to cause pro-oxidant effects or interfere with the synthesis of vitamin D. Source: http://dx.doi.org/10.1055/s-2008-1081296 ## **Resource Description** Exposure: M weather or climate related pathway by which climate change affects health Solar Radiation Geographic Feature: M resource focuses on specific type of geography None or Unspecified Geographic Location: resource focuses on specific location ## Climate Change and Human Health Literature Portal Global or Unspecified Health Impact: **☑** specification of health effect or disease related to climate change exposure Cancer, Dermatological Effect Resource Type: **№** format or standard characteristic of resource Review Resilience: M capacity of an individual, community, or institution to dynamically and effectively respond or adapt to shifting climate impact circumstances while continuing to function A focus of content Timescale: M time period studied Time Scale Unspecified